

Daily Tutorial Sheet-2	JEE Advanced (Archive)
-------------------------------	------------------------

16. Amphoteric

17.(F) ZnO: kAmphoteric

- **18.(C)** Electron deficient species acts as Lewis acid.
- **19.(A)** Protonated form of an anion.
- **20.** $HCOOH \rightleftharpoons H^+ + HCOO^-$

$$HCOONa \rightleftharpoons Na^+ + HCOO^-$$

1-0.75

In the above buffer solution, the significant source of formate ion (HCOO⁻) is HCOONa. Hence,

$$K_a = 2.4 \times 10^{-4} = \frac{[H^+](0.75)}{[HCOOH]}$$

$$[H^+] = \frac{2.4 \times 10^{-4} \times 0.20}{0.75} = 6.4 \times 10^{-5}$$

$$pH = -\log(64 \times 10^{-5}) = 4.20$$

21.(F)

22. In pure water, solubility = $\frac{9.57}{58} \times 10^{-3} \text{ M} = 1.65 \times 10^{-4} \text{ M}$

$$K_{sp} = 4S^3 = 4(1.65 \times 10^{-4})^3 = 1.8 \times 10^{-11}$$

In 0.02 M Mg(NO₃)₂;

Solubility of Mg(OH)₂ =
$$\sqrt{\frac{K_{sp}}{[Mg^{2+}]}} \times \frac{1}{2} = 1.5 \times 10^{-5} \text{ mol } L^{-1}$$

=
$$1.5 \times 10^{-5} \times 58 \text{ g L}^{-1} = 8.7 \times 10^{-4} \text{ g L}^{-1}$$

23. (i) 0.20 mole of HCl will neutralizes 0.20 mole CH₃COONa, producing 0.20 mol CH₃COOH. Therefore, in the solution moles of CH₃COOH = 1.20

Moles of CH₃COONa = 0.80

$$pH = pK_a + log \, \frac{[Salt]}{[Acid]} = -log (1.8 \times 10^{-5}) + log \, \frac{(0.80)}{(1.20)} = 4.56$$

$$\text{CH}_3\text{COONa} + \text{HCl} \longrightarrow \text{CH}_3\text{COOH} + \text{NaCl}$$

(ii) Initial 0.10 Final 0

0.20 0.10 0 0 0.10 0.10

Now, the solution has 0.2 mole acetic acid and 0.1 mole HCl. Due to presence of HCl, ionisation of CH₃COOH can be ignored (common ion effect) and H⁺ in solution is mainly due to HCl.


$$[H^+] = 0.10$$

$$pH = -\log(0.10) = 10$$

- **24.** Hydration
- **25.(A)** For precipitation to occur, $K_{sp} < Q_{sp}$.

$$Q_{sp} = \left(\frac{10^{-4}}{2}\right) \left(\frac{10^{-4}}{2}\right) = 2.5 \times 10^{-9} > K_{sp}$$

Hence, precipitate will be formed in this case. In all other case, $Q_{sp} < K_{sp}$ and no precipitation will occur.

- **26.(D)** in stomach, pH is 2-3, i.e. strongly acidic and aspirin will be almost unionised here due to common ion effect. However, pH in small intestine is 8, basic, aspirin will be neutralized here.
- **27.** HCN for buffer will be formed by the reaction

mmol of NaCN present initially =
$$\frac{0.01}{49} \times 1000 = 0.2$$

let x mmol of HCl is added to that x m mol of NaCN will be neutralized forming x mmol of HCN.

$$pH = pK_a + log \frac{[NaCN]}{[HCN]}$$

$$8.5 = -\log(4.1 \times 10^{-10}) + \log\frac{0.2 - x}{x}$$
 \Rightarrow $x = 0.177 \text{ mmol}$

28. HClO₄ is strongest acid

As its conjugate base is most stable

$$HClO_4 \longrightarrow H^+ + ClO_4^-$$

29. pOH of buffer solution = pK_b +
$$log \frac{[NH_4^+]}{[NH_4OH]} = -log(1.8 \times 10^{-5}) + log \frac{0.25}{0.005} = 5.44$$

$$[OH^-] = 3.6 \times 10^{-6} M$$

$$[Al^{3+}] = \frac{K_{sp}}{[OH^{-}]^3} = \frac{6 \times 10^{-32}}{(3.6 \times 10^{-6})} = 1.28 \times 10^{-15} \text{ M}$$

$$[Mg^{2+}] = \frac{K_{sp}}{[OH^{-}]^{2}} = \frac{8.9 \times 10^{-12}}{(3.6 \times 10^{-6})^{2}} = 0.68 \text{ M}$$

30.(D) In case of hydroxides of Group II A, solubility increases down the group. Therefore, $Be(OH)_2$ is least soluble, has lowest value of $K_{\rm sp}$.

VMC | Chemistry 128 Ionic Equilibrium